Zifan Zhou

Website: zifanzhou1024.github.io Github: zifanzhou1024 Email: zifanzhou1024@gmail.com Mobile: +1-347-423-1030 Linkedin: zifan-zhou-a4009612b

Education

• University of California, Los Angeles (UCLA) • Bachelor of Science - Computer Science; GPA: 3.57/4.0 Los Angeles, CA September 2021 – Present

Courses: Data Structure, Software Construction, Computer Organization, Algorithms and Complexity, Operating Systems, Deep Learning for Computer Vision, Data Science, Machine Learning, Artificial Intelligence, Programming Languages, Computer Network

EXPERIENCE

ACM at UCLA

Los Angeles, CA September 2021 - Present

- ACM ICPC: Committed 10 hours weekly on ACM ICPC training on algorithms and data structures.
- $\circ~$ ACM AI: Learned the basics of Artificial Intelligence and committed time to a Computer Vision project.
- \circ ACM AI Projects: Learned more advanced topics in Computer Vision and Worked on image recognition of whales
- ACM Hack HackCloud: Participated in the reproduction of cloud computing construction.

Projects

- Real-Time Face Recognition (Computer Vision): Developed a real-time face recognition system using YOLOv5 for detection and identification of faces. Tech: Python, PyTorch, PyCharm (September 2021 December 2021)
 - $\circ~$ Achieved high accuracy in face detection and recognition, tested on $\it Wilder~Face$ dataset.
 - Optimized model performance for real-time processing to use in real-time scenarios.
 - $\circ~$ Designed a better user interface system monitoring and control.
- Autonomous Driving (Reinforcement Learning, Computer Vision): AI model to resolve a safer and more reliable autonomous driving vehicle. Tech: Python, PyTorch. (January 2022 March 2022)
 - Reproduced Learning to drive from a world on rails, a high-ranked model on CARLA Leaderboard.
 - $\circ~$ Added LiDar input to the original model to make the self-driving prediction more accurate.
 - Created a Google Colab Demo containing EgoModel as well as ResNet34 and Image Segmentation part of the model.
- Bruin-O-Bruin Web Application: A web application features board elimination game inspired by Triple Tile Tech: JavaScript, React (September 2022 December 2022)
 - Built using Node.js, with React.js for the frontend and SQLite for the backend. Deployed on Azure for accessible online gameplay.
 - $\circ~$ Implemented scoreboard logic and user authentication with React.
 - $\circ~$ enhanced user interface for improved game play experience with icons from react-icons library.
- Neural Radiance Fields (NeRF) Models: Utilized NeRF models to create photorealistic 3D models from 2D images Tech: Python, PyTorch (January 2023 - March 2023)
 - Implemented a small-scale, experimental version of a NeRF model using PyTorch to test different datasets.
 - $\circ~$ Conducted comprehensive testing of the NeRF model using standard datasets like Lego and Fern, as well as a range of custom photographs.
 - $\circ~$ Explored advanced NeRF optimizations such as Mip-NeRF and Instant NeRF, analyzing their impact on rendering efficiency and quality.

HONORS AND AWARDS

- Dean's Honors List Fall, 2021
- Louis Levoy Engineering Scholarship (\$5500 per quarter) Awarded to outstanding undergraduate students majoring in Electrical Engineering) Winter & Spring, 2022

Skills Summary

- Languages: C, C++, C#, CSS, Go, HTML, JAVA, JavaScript, Kotlin, MATLAB, Python, Ruby, Scheme, SQL, OCaml
- Development Tools: Android Studio, VS Code, Visual Studio, Eclipse, IntelliJ IDEA, CLion, PyCharm, WebStorm
- Frameworks: Linux, GitHub, PyTorch, Tensorflow
- Machine Learning: Computer Vision, Autonomous Driving, Reinforcement Learning, Human-in-the-loop Machine Learning